考研论坛

 找回密码
 立即注册
查看: 165|回复: 0

考研数学:线性代数知识框架构建之一

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-7-26 15:55:39 | 显示全部楼层 |阅读模式
线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
  线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
  关于线性方程组的解,有三个问题值得讨论:
  (1)、方程组是否有解,即解的存在性问题;
  (2)、方程组如何求解,有多少个解;
  (3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
  高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
  (1)、把某个方程的k倍加到另外一个方程上去;
  (2)、交换某两个方程的位置;
  (3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
  任意的线性方程组都可以通过初等变换化为阶梯形方程组。
  由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
  对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
  可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
  高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
  阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-26 23:49 , Processed in 0.045587 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表