考研论坛

 找回密码
 立即注册
查看: 261|回复: 0

数学一考试大纲变化解析与复习建议

[复制链接]

1581

主题

1581

帖子

4745

积分

论坛元老

Rank: 8Rank: 8

积分
4745
发表于 2016-7-4 20:53:31 | 显示全部楼层 |阅读模式
试卷结构
   
    (一)题分及考试时间
   
    试卷满分为150分,考试时间为180分钟. 
   
    (二)内容比例
   
    高等教学 约56%
   
    线性代数 约22%
   
    概率论与数理统计22%
   
    (三)题型比例
   
    填空题与选择题 约45%
   
    解答题(包括证明题) 约55%
   
    解析: 2008年数一试卷结构变化比较有特点:
   
    1.试卷分值、考试时间,以及数一三科相对的内容比例上都没发生变化;保证了我们可以基本上延续以往的考研复习经验,而且可以很大程度上借鉴以往考生各科的复习时间安排和复习策略等等。
   
    2.结构的变化体现在题型的设置上大幅度降低了客观题(填空与选择)的比重,只占到总题型的37%(原为45%),相应地大大增加了主观题的比重,占到总题型的63%(原为55%),这说明08年的数学考试更注重我们对所学知识的融会贯通的理解和对综合应用能力的考核,这也从很大程度上提高了数学成绩的可信度,同时这样需要我们在复习的过程中更加注重自己对综合解答题和证明题的练习,提高做主观题的准确度。
     
    高等数学
   
    一、函数、极限、连续
   
    考试内容:
   
    函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
   
    数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
   
    函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
   
    考试要求:
   
    1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
   
    2.了解函数的有界性、单调性、周期性和奇偶性.
   
    3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
   
    4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
   
    5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
   
    6.掌握极限的性质及四则运算法则.
   
    7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
   
    8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
   
    9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
   
    10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
   
    二、一元函数微分学
   
    考试内容:
   
    导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径
   
    考试要求:
   
    1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
   
    2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
   
    3.了解高阶导数的概念,会求简单函数的高阶导数.
   
    4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
   
    5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
   
    6.掌握用洛必达法则求未定式极限的方法.
   
    7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
   
    8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
   
    9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.
   
    解析: 2008年数一大纲对一元函数微分学部分新加了两个知识点:
   
    1. 曲率圆
   
    在原来对曲率以及曲率半径的概念以及计算掌握的基础上,新添加了“曲率圆”,实际上有曲率半径就肯定对应有一个相应的曲率圆,所以曲率圆可以当作是曲率半径的延伸,这个知识点的增加基本没有增加对我们复习难度的要求,大家可以注意到,虽然在考试内容中提到了曲率圆的概念,但在考试要求中却并未强调,所以很大程度上该知识点的添加,只是为了完善我们的知识体系,为了确保不出意外,我们在复习的过程中在复习曲率半径的时候,理解曲率圆是什么东西,怎么来的,就可以了,没必要花太多时间深究。
   
    2. 函数图形凸凹性的判断
   
    新大纲在原有凸凹性要求的基础上进一步强调了凸凹性的判断方法,首先明确这点修改与以往相比没有增加难度,但是由于突出强调这个判断方法,有可能会在此问题上出相应的选择填空考核,函数的凸凹性本来就是非常重要的一项内容也是经常考到的内容,所以,需要我们在复习这部分内容的时候特别在意一下这个考点,多理解,多练习,多总结,把与这个知识点相关的有可能的出题方式以及此项知识点需要注意的易考细节都要复习到位,这样即使碰到这样的题也可以应付自如。
     
    三、一元函数积分学
   
    考试内容:
   
    原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
   
    考试要求:
   
    1.理解原函数概念,理解不定积分和定积分的概念.
   
    2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
   
    3.会求有理函数、三角函数有理式及简单无理函数的积分.
   
    4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
   
    5.了解广义反常积分的概念,会计算广义反常积分.
   
    6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心 等)及函数的平均值等.
   
    解析: 2008年数一大纲对一元函数积分学部分新加了一个知识点:用定积分计算几何量“形心”
   
    新大纲在原有要求掌握用定积分表达和计算一些几何量与物理量的基础上,加入了用定积分计算几何量“形心”。客观地来说并没有增加我们新知识点,只是一元函数积分学在实际中应用中的拓广。注:形心的定义及与重心的区别。形心:物体的几何中心(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。重心:物体的重力的合力作用点称为物体的重心(与组成该物体的物质有关)。大家在掌握形心定义的基础上要记忆各种坐标系以及各种情况下的计算公式,不需要很深刻的理解。平时练习的过程中多运算,提高自己在这方面的熟练程度。
    四、向量代数和空间解析几何
   
    考试内容:
   
    向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
   
    考试要求:
   
    1.理解空间直角坐标系,理解向量的概念及其表示.
   
    2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
   
    3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
   
    4.掌握平面方程和直线方程及其求法.
   
    5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
   
    6.会求点到直线以及点到平面的距离.
   
    7.了解曲面方程和空间曲线方程的概念.
   
    8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.
   
    9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
   
    解析:2008年数一大纲对向量及空间解析几何部分进行了一些说法上的修订:
   
    1. 考试内容上将“母线平行于坐标轴的柱面”更改为“柱面”,将“旋转面为坐标轴的旋转曲面的方程”改为“旋转曲面”。
   
    2. 考试要求上“以会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程”改为了“简单的柱面和旋转曲面”
   
    上述两点更正,客观地来说是增加了我们的复习难度,因为它把原来比较具体的柱面以及旋转曲面的条件都去掉了,这样我们在复习这个知识点时,需要我们会计算各种常见坐标轴下的旋转曲面和柱面的运算。它其实是一种更偏重于实际的应用,所以我们复习时需要对常见的简单柱面和旋转曲面的计算加强,但由于这部分内容并不是高等数学最核心的部分,不要花太多时间去理解很多本质性的东西,也没必要太深究难题。
     
    五、多元函数微分学
   
    考试内容:
   
    多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
   
    考试要求:
   
    1.理解多元函数的概念,理解二元函数的几何意义.
   
    2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.
   
    3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
   
    4.理解方向导数与梯度的概念,并掌握其计算方法.
   
    5.掌握多元复合函数一阶、二阶偏导数的求法.
   
    6.了解隐函数存在定理,会求多元隐函数的偏导数.
   
    7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
   
    8.了解二元函数的二阶泰勒公式.
   
    9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
   
    六、多元函数积分学
   
    考试内容:
   
    二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用
   
    考试要求:
   
    1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
   
    2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
   
    3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
   
    4.掌握计算两类曲线积分的方法.
   
    5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.
   
    6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
   
    7.了解散度与旋度的概念,并会计算.
   
    8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).
   
    七、无穷级数
   
    考试内容:
   
    常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在 上的傅里叶级数 函数在 上的正弦级数和余弦级数
   
    考试要求:
   
    1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
   
    2.掌握几何级数与p级数的收敛与发散的条件.
   
    3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
   
    4.掌握交错级数的莱布尼茨判别法.
   
    5. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系.
   
    6.了解函数项级数的收敛域及和函数的概念.
   
    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
   
    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
   
    9.了解函数展开为泰勒级数的充分必要条件.
   
    10.掌握ex、sinx、cosx、ln(1+x)和(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.
   
    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.
   
    八、常微分方程
   
    考试内容:
   
    常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程简单应用
   
    考试要求:
   
    1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)
   
    2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
   
    3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
   
    4.会用降阶法解下列方程: .
   
    5.理解线性微分方程解的性质及解的结构.
   
    6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
   
    7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
   
    8.会解欧拉方程.
   
    9.会用微分方程解决一些简单的应用问题.
    线性代数
   
    一、行列式
   
    考试内容:
   
    行列式的概念和基本性质 行列式按行(列)展开定理
   
    考试要求:
   
    1.了解行列式的概念,掌握行列式的性质.
   
    2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
   
    二、矩阵
   
    考试内容:
   
    矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算
   
    考试要求:
   
    1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.
   
    2.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
   
    3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
   
    4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
   
    5.了解分块矩阵及其运算.
   
    三、向量
   
    考试内容:
   
    向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
   
    考试要求:
   
    1.理解n维向量、向量的线性组合与线性表示的概念.
   
    2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
   
    3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
   
    4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系(调整前知识点:了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系.)
   
    5.了解n维向星空间、子空间、基底、维数、坐标等概念.
   
    6.了解基变换和坐标变换公式,会求过渡矩阵.
   
    7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
   
    8.了解规范正交基、正交矩阵的概念,以及它们的性质.
   
    四、线性方程组
   
    考试内容:
   
    线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
   
    考试要求:  
   
    l.会用克莱姆法则.
   
    2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
   
    3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
   
    4.理解非齐次线性方程组解的结构及通解的概念.
   
    5.掌握用初等行变换求解线性方程组的方法.
   
    五、矩阵的特征值和特征向量
   
    考试内容:
   
    矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵
   
    考试要求:
   
    1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
   
    2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
   
    3.掌握实对称矩阵的特征值和特征向量的性质.
   
    六、二次型
   
    考试内容:
   
    二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
   
    考试要求:
   
    1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.
   
    2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
   
    3.理解正定二次型、正定矩阵的概念,并掌握其判别法
   概率论与数理统计
   
    一、随机事件和概率
   
    考试内容:
   
    随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验。
   
    考试要求:
   
    1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.
   
    2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
   
    3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法..
   
    二、随机变量及其分布
   
    考试内容:
   
    随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
   
    考试要求:
   
    1.理解随机变量的概念.理解分布函数 的概念及性质.会计算与随机变量相联系的事件的概率.
   
    2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
   
    3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
   
    4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
   
    5.会求随机变量函数的分布.
   
    三、多维随机变量及其分布
   
    考试内容:
   
    多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
   
    考试要求:
   
    1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.
   
    2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
   
    3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.
   
    4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
   
    解析: 2008年数一大纲对随机变量的定义进行了一些说法上的修订:
   
    1.这部分定义上的更正,完全是对原先大纲语言表述上的完善,没有增加任何的新的要求和知识点,反而从另一个角度讲,这种规范有利于我们在做题以及理解上的惯性,使我们较快较准地识别各种随机变量的特征,比如一看到 马上反映到以 为参数的泊松分布,不容易产生混淆。所以我们在解题时也最好能继承随机变量的这种表示风格,不要随便自我创造,增加混淆度。
     
    四、随机变量的数字特征
   
    考试内客:
   
    随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 矩、协方差 相关系数及其性质
   
    考试要求:
   
    1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
   
    2.会求随机变量函数的数学期望.
   
    五、大数定律和中心极限定理
   
    考试内容:
   
    切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理
   
    考试要求:
   
    1.了解切比雪夫不等式.
   
    2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
   
    3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
   
    六、数理统计的基本概念
   
    考试内容:  
   
    总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
   
    考试要求:
   
    1、理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。其中样本方差定义为:
   
    2、了解产生 分布 变量、 变量和 变量的典型模式;理解标准正态分布、 分布、 分布和 分布的 分位数,会查相应的数值表。
   
    解析:2008年数一大纲对分位数的计算要求进行了一些修订:
   
    1.这部分更正,没有增加任何的新的要求和知识点,反而降低了要求,因为对于分位数有上侧分位数,还有下侧分位数,这种限制明确了我们的复习范围和要求,不容易产生混淆,我们只需要掌握解题方法,针对提到的几种分布会熟练计算其上侧分位数,保证计算准确度即可。
     
    3、掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布。
   
    4、理解经验分布函数的概念和性质,会根据样本值求经验分布函数。
   
    七、参数估计
   
    考试内容
   
    点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体均值的区间估计 单个正态总体的方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计
   
    考试要求
   
    1、理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。
   
    2、掌握矩估计法(一阶、二阶矩)和最大似然估计法。
   
    3、掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法。
   
    4、掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法。
   
    八、假设检验
   
    考试内容
   
    显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
   
    考试要求
   
    1、理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验。
   
    2、理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率。
   
    3、掌握单个及两个正态总体的均值和方差的假设检验。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-12-22 11:01 , Processed in 0.078403 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表