考研论坛

 找回密码
 立即注册
查看: 190|回复: 0

2019计算机考研高数49个基础知识点(必知)

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2018-9-27 18:36:38 | 显示全部楼层 |阅读模式
高等数学复习基础要打好,新东方在线梳理高数9章49个知识点的,考生注意理解掌握。
    第一章 函数、极限与连续
    1、函数的有界性
    2、极限的定义(数列、函数)
    3、极限的性质(有界性、保号性)
    4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)
    5、函数的连续性
    6、间断点的类型
    7、渐近线的计算
      第二章导数与微分
    1、导数与微分的定义(函数可导性、用定义求导数)
    2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)
    3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))
        第三章中值定理
    1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)
    2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)
    3、积分中值定理
    4、泰勒中值定理
    5、费马引理
        第四章 一元函数积分学
    1、原函数与不定积分的定义
    2、不定积分的计算(变量代换、分部积分)
    3、定积分的定义(几何意义、微元法思想(数一、二))
    4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)
    5、定积分的计算
    6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)
    7、变限积分(求导)
    8、广义积分(收敛性的判断、计算)
      第五章 空间解析几何(数一)
    1、向量的运算(加减、数乘、数量积、向量积)
    2、直线与平面的方程及其关系
    3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法
        第六章 多元函数微分学
    1、二重极限和二元函数连续、偏导数、可微及全微分的定义
    2、二元函数偏导数存在、可微、偏导函数连续之间的关系
    3、多元函数偏导数的计算(重点)
    4、方向导数与梯度
    5、多元函数的极值(无条件极值和条件极值)
    6、空间曲线的切线与法平面、曲面的切平面与法线
      第七章 多元函数积分学(除二重积分外,数一)
    1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)
    2、三重积分的计算(“先一后二”、“先二后一”、球坐标)
    3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)
    4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)
    5、高斯公式(重点)(不满足条件时的处理(类似格林公式))
    6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)
    7、场论初步(散度、旋度)
        第八章 微分方程
    1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解
    2、线性微分方程解的性质(叠加原理、解的结构)
    3、应用(由几何及物理背景列方程)
      第九章 级数(数一、数三)
    1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)
    2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)
    3、交错级数的莱布尼兹判别法
    4、绝对收敛与条件收敛
    5、幂级数的收敛半径与收敛域
    6、幂级数的求和与展开
    7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-1-15 20:37 , Processed in 0.075165 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表