考研论坛

 找回密码
 立即注册
查看: 241|回复: 2

2018考研数学冲刺:教你三步搞定证明题

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-12-7 22:30:53 | 显示全部楼层 |阅读模式

2015041403424655530.jpg

2015041403424655530.jpg

2018考研学习交流3群 438424323

2017031709505260830.png

2017031709505260830.png

  2018考研数学冲刺复习进行中,下面整理分享2018考研数学冲刺:教你三步搞定证明题,帮助大家更好的复习!
  1、结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。
  只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。
  这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
  2、借助几何意义寻求证明思路
  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。
  如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。
回复

使用道具 举报

0

主题

7800

帖子

1万

积分

论坛元老

Rank: 8Rank: 8

积分
16366
发表于 2017-12-7 23:09:53 | 显示全部楼层

  ►下面归纳中值定理常考的几个类型及解法

2017120711225811530.jpg

2017120711225811530.jpg

2017120711232888230.jpg

2017120711232888230.jpg

2017120711284090630.jpg

2017120711284090630.jpg

2017120711290913930.jpg

2017120711290913930.jpg


  再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。
  从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
回复 支持 反对

使用道具 举报

0

主题

7800

帖子

1万

积分

论坛元老

Rank: 8Rank: 8

积分
16366
发表于 2017-12-7 23:20:46 | 显示全部楼层

  3、逆推法
  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
  以上是中公考研为大家准备整理的“2018考研数学冲刺:教你三步搞定证明题”的相关内容。另外中公考研提醒大家2018考研考场查询入口|2018考研考场安排、2018年各省市研究生招生考试报名人数汇总已经出来。同时,为了帮助考生更好地复习,中公考研为广大学子推出2018考研考前冲分营、VIP1对1、保研课程系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
  
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-6 21:56 , Processed in 0.074318 second(s), 10 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表