考研论坛

 找回密码
 立即注册
查看: 419|回复: 0

2018考研数学:线性代数必看备考注意事项

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-23 14:23:06 | 显示全部楼层 |阅读模式
在考研数学中线性代数考试题型不多、计算方法比较初等、计算量比较大等特点,导致很多考生对线性代数感到棘手。提醒各位考生在复习过程中要注重以下几点:
        1.综合掌握“一条主线,两种运算,三个工具”
    复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,线代概念非常多而且相互联系,但线代贯穿的主线求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。
        2.网状化知识结构,提高综合分析能力
    线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对,再问做得好不好。只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
    文章开头提到了历年真题中,两道大题考试内容。考生应注意掌握知识点间的联系与区别,例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。灵活掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。
        3.加强逻辑性,正确简明叙述表述
    线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
      4.理解与把握基本概念,熟练运用基本运算
    线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
        5.不要陷入行列式的复杂计算之中
    行列式是线性代数中的基本工具,在研究线性方程组和特征值和特征向量时会用到,有些行列式的计算很复杂,计算量也很大,但考研大纲对这部分内容的要求并不高,只是要求会用行列式的性质和按行(列)展开定理计算行列式,该部分内容不是考试的重点,因此不要在这方面花太多时间,只要掌握基本的公式和计算方法即可。从历年考研试题分布来看,涉及行列式计算的题型有4种形式:一是单纯的行列式计算,即题目给出一个具体行列式,要求计算其值,二是给出一些抽象矩阵(方阵)及相应条件,要求计算其矩阵行列式的值,三是在解线性方程组时需要计算其系数矩阵的行列式的值,四是在求解特征值时可能需要计算特征方程的根,这4种题型考生在复习时都要做一些题,掌握其基本解题方法。
        6.抓住线性代数的核心——矩阵
    矩阵和行列式是研究线性代数问题的基本工具,尤其是矩阵,它是线性代数的灵魂,贯穿整个学习过程的始终。在求解线性方程组时,主要是通过矩阵的秩来判断解的存在性和唯一性,具体计算时主要是通过矩阵的初等变换来求其解;在分析讨论向量组的线性相关和线性无关时,利用矩阵的性质来判断其相关性和无关性也是常用的一种方法;在计算特征向量时,一般都是利用矩阵的性质或解方程组来求解;在解决二次型问题时,首先是利用矩阵运算将其表达为矩阵乘法形式,然后利用矩阵变换将其化为标准形。由此可知,矩阵是学习的重中之重。学习矩阵时,一方面要掌握其性质并灵活运用到有关的计算和证明问题中,另一方面要充分结合其它知识点的学习来进一步强化。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-5 12:07 , Processed in 0.077964 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表