考研论坛

 找回密码
 立即注册
查看: 152|回复: 0

考研数学高数多元函数全微分与偏导数的关系

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-17 16:54:27 | 显示全部楼层 |阅读模式
  数学是考研各科中难度较大的一科,2018考研数学:多元函数偏导存在和连续的关系,一起来看下!  
  dz=fx(x,y)Δx+fy(x,y)Δy,dz是全微分,fx、fy是对x、y的偏导数。
  如果函数z=f(x, y) 在(x, y)处的全增量  Δz=f(x+Δx,y+Δy)-f(x,y)  可以表示为  Δz=AΔx+BΔy+o(ρ),  其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即  dz=AΔx +BΔy  该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。
  在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
  在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的“变化率”。然而,由于自变量多了一个,情况就要复杂的多。
  在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。
  在这里我们只学习函数f(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时,f(x,y)的变化率。
  偏导数的算子符号为:∂。
  偏导数反映的是函数沿坐标轴正方向的变化率。
  表示固定面上一点的切线斜率。
  偏导数f'x(x0,y0)表示固定面上一点对x轴的切线斜率;偏导数f'y(x0,y0)表示固定面上一点对y轴的切线斜率。
  高阶偏导数:如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。
  二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy.
  注意:f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f"xy与f"yx都连续时,求导的结果与先后次序无关。
   以上是中公考研为大家准备整理的“考研数学高数多元函数全微分与偏导数的关系”的相关内容。另外,中公考研提醒大家2018考研招生简章、2018考研招生目录、2018考研参考书目以及2018考研大纲已经出来,中公考研将为大家及时提供相关资讯。另外,为了帮助考生更好地复习,中公考研为广大学子推出2018考研暑期集训营、半年集训营、保研课程系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
  [b]
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-8-1 20:16 , Processed in 0.045055 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表