考研论坛

 找回密码
 立即注册
查看: 107|回复: 0

考研数学线性代数知识点框架(3)

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-6 15:28:04 | 显示全部楼层 |阅读模式
部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。
    回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ..., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。
    任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。
    如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称A和B等价。
    一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。
    注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。
    一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。
    向量线性无关的充分必要条件是它的秩等于它所含向量的数目。等价的向量组有相同的秩。
    有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。
    向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。
2012年考研课程推荐
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-7 05:37 , Processed in 0.039590 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表