考研论坛

 找回密码
 立即注册
查看: 99|回复: 0

考研数学复习:微积分教程七

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-6 15:11:48 | 显示全部楼层 |阅读模式
实数系——极限论——微积分
18世纪的分析学
    驱动18世纪的微积分学不断向前发展的动力是物理学的需要,物理问题的表达一般都是用微分方程的形式。18世纪被称为数学史上的英雄世纪。他们把微积分应用于天文学、力学、光学、热学等各个领域,并获得了丰硕的成果。在数学本身又发展出了多元微分学、多重积分学、微分方程、无穷级数的理论、变分法,大大地扩展了数学研究的范围。
    其中最著名的要数最速降线问题:即最快下降的曲线的问题。这个曾经的难题用变分法的理论可以轻而易举的解决。
微积分的现代发展
    人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着。以下列举了几个例子,足以说明人类认识微积分的水平在不断深化。
    在Riemann将Cauchy的积分含义扩展之后,Lebesgue又引进了测度的概念,进一步将Riemann积分的含义扩展。例如著名的Dirichilet函数在Riemann积分下不可积,而在Lebesgue积分下便可积。
    前苏联著名数学大师所伯列夫为了确定偏微分方程解的存在性和唯一性,建立了广义函数和广义导数的概念。这一概念的引入不仅赋予微分方程的解以新的含义,更重要的是,它使得泛函分析等现在数学工具得以应用到微分方程理论中,从而开辟了微分方程理论的新天地。
    我国的数学泰斗陈省身先生所研究的微分几何领域,便是利用微积分的理论来研究几何,这门学科对人类认识时间和空间的性质发挥的巨大的作用。并且这门学科至今仍然很活跃。前不久由我国数学家朱熹平、曹怀东完成最后封顶的庞加莱猜想便属于这一领域。
    在多元微积分学中,Newton—Leibniz公式的对照物是Green公式、Ostrogradsky—Gauss公式、以及经典的Stokes公式。无论在观念上或者在技术层次上,他们都是Newton—Leibniz公式的推广。随着数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。在微分流形上,外微分式扮演着重要的角色。于是,外微分式的积分和微分流形上的Stokes公式产生了。而经典的Green公式、Ostrogradsky—Gauss公式、以及Stokes公式也得到了统一。
    微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。人类对自然的探索永远不会有终点。
对待考研数学,在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完例题之后,切莫忘记要好好选两道习题来巩固一下。不要因一些难题贬低自己的自信心。
mtpdC1ib3JkZXItdmVydGljYWwtc3BhY2luZzogMHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZmZWN0OiBub25lOyAtd2Via2l0LXRleHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1zdHJva2Utd2lkdGg6IDBweA==">
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-2 15:27 , Processed in 0.053577 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表