|
一阶微分与高阶微分
函数一阶导数对应的微分称为一阶微分;
一阶微分的微分称为二阶微分;
.......
n阶微分的微分称为(n+1)阶微分
即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)
含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为
F(t,yt,Dyt,…, Dnyt)=0,
其中F是t,yt, Dyt,…, Dnyt的已知函数,且Dnyt一定要在方程中出现。
含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为
F(t,yt,yt+1,…,yt+n)=0,
其中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。
常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
微积分的诞生及其重要意义
微积分的诞生是继Euclid几何建立之后,数学发展的又一个里程碑式的事件。微积分诞生之前,人类基本上还处在农耕文明时期。解析几何的诞生是新时代到来的序曲,但还不是新时代的开端。它对旧数学作了总结,使代数与几何融为一体,并引发出变量的概念。变量,这是一个全新的概念,它为研究运动提供了基础
推导出大量的宇宙定律必须等待这样的时代的到来,准备好这方面的思想,产生像牛顿、莱布尼茨、拉普拉斯这样一批能够开创未来,为科学活动提供方法,指出方向的领袖,但也必须等待创立一个必不可少的工具——微积分,没有微积分,推导宇宙定律是不可能的。在17世纪的天才们开发的所有知识宝库中,这一领域是最丰富的,微积分为创立许多新的学科提供了源泉。
微积分的建立是人类头脑最伟大的创造之一,一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。恩格斯说:
“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。”
有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。
对待考研数学,在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完例题之后,切莫忘记要好好选两道习题来巩固一下。不要因一些难题贬低自己的自信心。
mtpdC1ib3JkZXItdmVydGljYWwtc3BhY2luZzogMHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZmZWN0OiBub25lOyAtd2Via2l0LXRleHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1zdHJva2Utd2lkdGg6IDBweA=="> |
|