|
考研数学中线性代数的概念很多,往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关.使知识形成网,努力提高综合分析能力。
以下列出些线性代数解题中常用的思维定势,供大家参考。
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
mtpdC1ib3JkZXItdmVydGljYWwtc3BhY2luZzogMHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZmZWN0OiBub25lOyAtd2Via2l0LXRleHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1zdHJva2Utd2lkdGg6IDBweA=="> |
|