考研论坛

 找回密码
 立即注册
查看: 99|回复: 0

2016考研数学高数:定积分与不定积分定理总结

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-6 12:11:46 | 显示全部楼层 |阅读模式
在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。
    ▶不定积分
    1、原函数存在定理
    ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
    ●分部积分法
    如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。
    2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。
      ▶定积分
    1、定积分解决的典型问题
    (1)曲边梯形的面积(2)变速直线运动的路程
    2、函数可积的充分条件
    ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
    ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
      3、定积分的若干重要性质
    ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。
    ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。
    ●推论|∫abf(x)dx|≤∫ab|f(x)|dx。
    ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
    ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。
    4、关于广义积分
    设函数f(x)在区间[a,b]上除点c(a<c</c
      ▶定积分的应用
    1、求平面图形的面积(曲线围成的面积)
    ●直角坐标系下(含参数与不含参数)
    ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)
    ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)
    ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)
    ●功、水压力、引力
    ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-9 05:50 , Processed in 0.053650 second(s), 14 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表