考研论坛

 找回密码
 立即注册
查看: 139|回复: 0

2018考研数学压轴必考题型:参数估计

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-7-17 17:35:48 | 显示全部楼层 |阅读模式
  参数估计是考研概率的最后一个考点,近几年参数估计一直是数一和数三的必考题目,必出现在整张试卷的最后一道大题,压轴出场,分值11分。如此重要的战略关卡,该如何拿下?今天就来为大家解析。
  虽然16年考研数学一和数学三最后一道题均未考查,但16年数学一填空题考查了区间估计,分值4分,但17年数一和数三均考查了一道大题,分值11分,迄今参数估计这个考点的重要地位仍不可撼动。
  参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。
  本章考研主要题型为:
  (1)参数的点估计:矩估计、极大似然估计估计量的评选标准(数一考查)
  (2)参数的区间估计:正态总体的区间估计(数一考查)
  矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)其方法步骤如下:
  1.构建未知参数的方程,通过总体的原点矩来构造。
  2.解方程,解出未知参数。
  3.用样本矩代替总体矩,得未知参数的矩估计量(值)。
  极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。
  1.构造自然函数,注意,离散总体和连续总体的似然函数不同。
  2.取对数。
  3.求导数找驻点得估计。
  注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。
  估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。
  参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:
  第一步,选枢轴量定分布;
  第二步,造大概率事件得不等式;
  第三步,解不等式得置信区间。
  以上是数一和数三对参数估计部分的全部考点,期望大家能熟练理解其思想和熟练掌握方法步骤,多练习,已达到熟练解题的要求。
  概率的题目题型比较固定,考生如若能掌握考试常见题型及解题基本方法,便能胸有成竹,自信满满的将概率这科拿下,考研数学三个科目中概率最易拿分,希望考生们一定将此科目满分拿下,切不可掉以轻心。
  以上是中公考研为大家准备整理的“2018考研数学压轴必考题型:参数估计”的相关内容。另中公考研提醒大家2018考研招生简章、2018考研招生目录、2018考研大纲已陆续公布,中公考研将为大家及时提供相关资讯。另外,为了帮助考生更好地复习,中公考研为广大学子推出2018考研暑期集训营、半年集训营、保研课程系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
  
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-14 00:33 , Processed in 0.057185 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表