考研论坛

 找回密码
 立即注册
查看: 99|回复: 0

2017考研数学:高数定理证明之求导公式

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-9-9 15:16:24 | 显示全部楼层 |阅读模式
  关键词:2017考研数学大纲|2017考研数学定理|2017考研数学复习
  考研数学的四大定理是每个考研学员都必须要掌握的知识,暑期已过,距离考研的时间也越来越近,同学们都在积极备考。考研数学有四大重要定理分别是微分中值定理的证明、求导公式的证明、积分中值定理和微积分基本定理的证明,下文我们来看的是求导公式的证明
  2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 >>>推荐阅读:2017考研数学大纲变化情况汇总
  当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-4 03:06 , Processed in 0.066330 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表