考研论坛

 找回密码
 立即注册
查看: 102|回复: 0

考研数学中值定理及其应用

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-8-15 21:44:19 | 显示全部楼层 |阅读模式
考研数学复习中,中值定理证明题是让很多考生头疼的一个点,解这类题的关键在构造辅助函数,辅助函数构造好了,题目便能迎刃而解。对此我们不光详细列出和讲解了中值定理相关的基础知识,而且列了专题讨论和讲解了辅助函数的构造问题并附有大量例题。本文总结其中几点如下,供考生参考。
        考研数学考察的中值定理有:罗尔中值定理、拉格朗日中值定理(即微分中值定理)、柯西中值定理和泰勒中值定理。这四个定理之间的联系和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。泰勒公式中的x0=0时为泰勒公式的特殊情况,为麦克劳林公式,常见函数的麦克劳林展开式要熟记,在求极限和级数一章中有很重要的应用。
        证明题中辅助函数的构造方法:
        一、结论中只含ξ,不含其它字母,且导数之间的差距为一阶。
       

一7042949.jpg

一7042949.jpg

        二、结论中只含ξ,不含其它字母,且导数之间相差超过一阶。
       

二8194549.jpg

二8194549.jpg

        三、结论中除含ξ,还含有端点a,b
       

三6697349.jpg

三6697349.jpg

        四、结论中含两个或两个以上的中值。
       

clip_image0022806949.jpg

clip_image0022806949.jpg
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-4 04:42 , Processed in 0.072151 second(s), 9 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表