考研论坛

 找回密码
 立即注册
查看: 330|回复: 0

2016考研数学备考:线性复习思路点拨

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-8-5 18:03:01 | 显示全部楼层 |阅读模式
  2016年考研寒假复习已经开始了,对于准备早考研的考生来说寒假正好是预热准备的环节,所以对于数学的基础概念理论知识更需要在起步的时候打好基础,太奇考研数学老师为大家总结考研复习初期复习一些方法和概念总结,希望能够帮助16考研人做好基础备考。
          1.行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
          2.矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次:
          (1)矩阵的符号运算
          (2)具体矩阵的数值运算
          3.关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
          4.向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
          5.于特征值、特征向量,要求基本上有三点:
          (1)要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。
          (2)有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.
          (3)相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.
          6.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:
          (1)化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些。
          (2)二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
       
       
       
        [b]
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-15 23:01 , Processed in 0.057125 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表