考研论坛

 找回密码
 立即注册
查看: 187|回复: 0

联考数学线性代数复习方法

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-7-27 10:51:57 | 显示全部楼层 |阅读模式
关于数学,特别是线性代数的复习备考,这里提出“早”、“纲”、“基”、“活”的四字方略,供理工类、经济类考生参考.
  一、“早”.提倡一个“早”字,是提醒考生考研数学备考要早计划、早安排、早动手.因为数学是一门思维严谨、逻辑性强、相对比较抽象的学科.和一些记忆性较多的学科不同,数学需要理解的概念多,方法又灵活多变,而理解概念,特别是理解比较抽象的概念是一个渐近的过程,它需要思考、消化,需要琢磨、需要从不同的角度、不同的侧面的深入研究,总之它需要时间,任何搞突击,搞速成的思想不可取,这对大多数考生而言,不可能取得成功;另一方面,早计划、早安排、早动手是采取“笨鸟先飞”之策,这是考研的激烈竞争现实所要求的,早一天准备,多一分成绩,多一份把握,现在不少大一、大二的在校生已经在准备2~3年后的考研,这似乎是早了点,但作为一个目标、作为一个追求,无可非议.作为2015年的考生,从现在开始备考,恐怕已经不算太早了.
  二、“纲”.突出一个纲字,就是要认真研究考试大纲,要根据考试大纲规定的考试内容、考试要求、考试样题有计划地、认真地、全面地、系统地复习备考,加强备考的针对性.
  由于全国基础数学教材(高等数学,线性代数,概率论和数理统计)并不统一,各学校、各专业对这些课程要求的层次也各不相同,因此教育部并没有指定统一的教材或参考书作为命题的依据,而是以教育部制定的《全国硕士研究生入学统一考试数学考试大纲》(下称《大纲》)作为考试的法规性文件,命题以《大纲》为依据,考生备考复习当然也应以《大纲》为依据.
  为了让广大考生对“考什么”有一定的了解(不是盲目的备考),教育部考试中心命制的试题,每年都具有稳定性、连续性的特点.《大纲》提供的样题及历届试题也在于让考生了解“考什么”.历届试题中,从来没有出过偏题、怪题,也没有出过超过大纲范围的超纲题.当然,一份好的试题,首先要有好的区分度,使高水平考生考出好成绩,因此试题中难、易试题要有恰当的搭配;试题的总量必须有一定的限制,同时试题还要有尽可能大的覆盖面,因此一味地去做难题,甚至怪题、偏题是不可取的,“题海战术”不能替代全面、系统的复习,由于试题有极大的覆盖面,每年试题几乎都要覆盖所有的章节,因此偏废某部分内容也是不恰当的.任何“猜题”及侥幸心理都会导致失败.只有根据大纲,全面、系统地复习,不留遗漏,才不会留下遗憾.
  请广大考生留意,今年《大纲》有一定的变化:所有的近似计算取消了,特别是数学试卷二,“线性代数初步”中取消了“初步”两字,增考了“特征值、特征向量”一章的内容.
  三、“基”.强调一个“基”字,是指要强调数学学习中的三基,即要重视基本概念的理解,基本方法的掌握,基本运算的熟练.
  基本概念理解不透彻,对解题会带来思维上的困难和混乱.因此对概念必须搞清它的内涵,还要研究它的外延,要理解正面的含义,还要思考、理解概念的侧面、反面.例如关于矩阵的秩,教材中的定义是:A是阴Xn矩阵,若A中有一个r阶子式不为零,所有r阶以上子式(如果它还有的话)均为零,则称A的秩为r,记成rank(A):r(或r(A)=r,秩A=r).显然,定义中内涵的要点有:1.A中至少有一个r阶子式不为零;2.所有r阶以上均为零.3.若所有r+1子式都为零,则必有所有r阶以上子式均为零.要点2和3是等价条件,至于r阶子式是否可以为零?小于r阶的子式是否可以为零?所有r-1阶的子式是否可以全部为零?这些都是秩的概念的外延内容,如果这些概念搞清楚了。那么下述选择题就会迎刃而解.
  例1 设A是m×n矩阵,r(A)=r
  (A)至少有一个r阶子式不为零,没有等于零的r-1阶子式.
  (B)有不等于零的r阶子式,没有不等于零的r+1阶子式.
  (C)有等于零的r阶子式,没有不等于零的r+1阶子式.
  (D)任何r阶子式不等于零,任何r+1阶子式都等于零.
  答案:(B)
  基本方法要熟练掌握.熟练掌握不等于死记硬背,相反要抓问题的实质,要在理解的基础上适当记忆.把需要记忆的东西缩小到最低限度,很多方法可以通过练习来记住,例如一个实对称矩阵,一定存在正交矩阵,通过正交变换化为对角阵,其步骤较多,但通过练习,不难解决.
  基本计算要熟练.学习数学,离不开计算,计算要熟练,当然要做一定数量的习题,通过一定数量的习题,把计算的基本功练扎实.在练习过程中,自觉的提高运算能力,提高运算的准确性,养成良好的运算习惯和科学作风.特别对线性代数而言,运算并不复杂,大量的运算是大家早已熟练了的加法和乘法,从而养成良好的运算习惯和科学作风显得尤为重要。例如线性代数的前四章中(行列式、矩阵、向量、方程组)绝大多数的运算是初等变换.用初等变换求行列式的值、求逆矩阵、求向量组(或矩阵)的秩、求向量组的极大线性无关组、求方程组的解等.可以想象,一旦初等变换过程中出现某个数值计算错误,那你的答案将是什么样的结果?从历届数学试题来看,每年需要通过计算得分的内容均在70%左右,可见计算能力培养的重要.只听(听各种辅导班)不练,只看(看各类辅导资料)不练,眼高手低,专找难题做,这并不适合一般考生的情况,在历届考生中,不乏有教训惨痛的人.
  四、“活”.线性代数中概念多、定理多、符号多、运算规律多,内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应通过全面系统的复习,充分理解概念,掌握定理的条件、结论及应用,熟悉符号的意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,抓规律,使零散的知识点串起来、连起来,使所学知识融会贯通,实现一个“活”字.
  线性代数各章节的内容,不是孤立割裂的,而是相互渗透、紧密联系的.如A是n阶方阵,若,|A|≠0(称A为非奇阵).A是可逆阵.有n阶方阵B,使得AB=BA=E.B=A-1=A*/|A|.r(A)=n(称A是满秩阵).存在若干个初等阵P1,P2,…,PN,使得PNPN-1…P1A=E.(A┆E)→(E┆A-1).A可表示成若干个可逆阵的乘积.A可表示成若干个初等阵的积。A的列向量组线性无关(列满秩).AX=0,唯一零解.A的行向量组线性无关(行满秩).A的列(行)向量组是Rn空间的基.任何n维列向量b均可由A的列向量线性表出(且表出法唯一).对任意的列向量b,方程组AX=b有唯一解,且唯一解为A-1bA没有零特征值,即λi≠O,i=1,2,…,n.
  这种知识间的相互联系、渗透,给综合命题创造了条件,同样一个试题,可以从不同的角度有多种命制试题的方法.
  例2 (2001年数学一第九题)设α1,α2,…,αs,是线性方程组AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs也是AX=0的基础解系.
  解析 本题的答题要点是:(1)对任意t1,t2,βi,i=1,2,…,s仍是AX=0的解;(2)对任意t1,t2,β1,β2,…,βs向量个数是s;(3)β1,β2,…,βs,线性无关t1s+(一1)n+1t2s≠0.
  满足(1)、(2)、(3)时,即,t1s+(一1)n+1t2s一1)”≠0时,β1,β2,…,βs仍是AX=0的基础解系.
  变式(1) (改变成线性相关性试题)
  已知向量组α1,α2,…,αs线性无关,β1=t1α1+t2α2,β2=t1α2+ t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs线性无关.
  变式(2) (改变成向量组的秩的试题)
  已知向量组α1,α2,…,αs的秩为s.β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+ t2α1,试问t1,t2满足什么条件时,r(β1,β2,…,βs)=s.
  变式(3) (改变成等价向量组的试题)
  已知α1,α2,…,αs线性无关,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs和α1,α2,…,αs是等价向量组.
  变式(4) (改变成子空间的基的试题)
  设y是Rn的子空间,α1,α2,…,αs是V的基,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs也是子空间V的基.
  难道你不认为以上的各种变式基本上是一样的吗?它们的答题要点是什么呢?
  改变试题难度,将向量个数s具体化,则成2001年数学试卷二第十二题.
  变式(5) 已知α1,α2,α3,α4,是线性方程组AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,β3=t1α3+t2α4,β4=t1α4+t2α3,,试问t1,t2满足什么条件时,β1,β2,β3,β4,也是AX=0的基础解系.
  改变参数,你不是可以“随心所欲”吗?
  变式(6) 已知α1,α2,…,αs是AX=0的基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,试问α1,α2,…,αs,满足什么条件时,β1,β2,…,βs也是AX=0的基础解系.
  如果你体会不到以上各种变式实质上是一样的,那么你没有学“活”线性代数,你的知识点还是孤立的.
  由于知识间的紧密联系和渗透,而综合考试试题不再依附于某章、某节(依附于某章、某节后面的习题,实际上是给解题人提供了用该章、该节的内容和方法解题的提示),这会给考生解题带来困难.学“活”并非易事,需要经常总结,广开思路.
  例3 已知A是n阶正定阵,B是n阶反对称阵,证明A-B2是正定阵.
  解析 本题题目本身有提示性,已知的是正定阵,要证的也是正定阵,显然属于二次型中有关正定性的试题,具体解答如下.
  B是反对称阵,故BT=-B.
  任给X≠0,因A正定,故XTAX>O,又XT(一B2)X=XTBTBX=(BX)TBX≥0.
  故有XT(A-B2)X=XT(A+(-B)B)X=XT(A+BTB)X=XTAX+(BX)TBX>O.
  所以A-B2是正定阵.
  变式(1) 已知A是n阶正定阵,B是n阶反对称阵.证明A-B2是可逆阵.v这个变式要求证明A-B2可逆,但已知A正定.为了利用已知条件,还可以想到A-B2是否正定,即若证明了A-B2正定,自然也就证明了A-B2可逆.
  变式(2) 已知B是n阶反对称阵,E是n阶单位阵,证明E-B2可逆.
  这个变式中,隐去了A是正定阵的条件,而是给了一个具体的正定阵E,要求想到用证正定的角度来证E-B2可逆,难度就相当大了,这需要经验的积累和总结.
  由于知识间的广泛联系和相互渗透,给不少题的一题多解创造了条件.你可以从各个不同的角度去研究试题,找到一个合适的切入点,从而最终找到问题的答案.
  总之,重视三基,重视各章节之间的联系,重视从多角度研究试题,重视灵活性和综合性,重视应用,是取得理想成绩的必由之路。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-16 12:04 , Processed in 0.068201 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表