2017年考研数学:概率论四、五、六章重点总结
【随机变量的数字特征】一、本章的重点内容:
随机变量的数字特征定义(数学期望、方差、标准差、矩、协方差、相关系数);
常见分布的数字特征;
利用数字特征的基本性质计算具体分布的数字特征;
根据一维和二维随机变量的概率分布求其函数的数学期望.
二、常见典型题型:
1.求一维随机变量函数的数字特征;
2.求二维随机变量或函数的数字特征;
3.求两个随机变量的协方差或相关系数;
4.数字特征在经济中的应用题.
【大数定律和中心极限定理】
一、本章的重点内容:
三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律;
两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理.
本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了.
二、常见典型题型:
1.估计概率的值;
2.与中心极限定理相关的命题.
【数理统计的基本概念】
一、本章的重点内容:
数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩,
常见统计量:包括标准正态分布、卡方分布、t分布和F分布,要掌握这些分布对应随机变量的典型模式及它们参数的确定,这些分布的分位数和相应的数值表,
正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布.
二、常见典型题型:
1.样本容量的计算;
2.分位数的求解或判定;
4.总体或统计量的分布函数的求解或判定或证明;
5.求总体或统计量的数字特征.
页:
[1]