2015年考研线性代数解题的八种思维定势
2015年考研复习已经进入暑期强化阶段,太奇老师预计2015年考研大纲将在八月底九月初公布,届时就会有各科复习范围供考研人进行参考,而在大纲发布前的暑假里,我们则应该尽量按照历年考研大纲变化不大的地方进行紧凑的复习,在2015大纲发布后进行补漏查缺,提早为大纲的发布做好准备。下面是线性代数解题的八种思维定势:
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
推荐链接:
页:
[1]