考研论坛

 找回密码
 立即注册
查看: 564|回复: 0

2019考研数学:二重积分的计算思路与方法

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2018-11-17 12:57:16 | 显示全部楼层 |阅读模式
  数学冲刺复习任务很重,考生要注意多刷题,多总结。本文是新东方网分享的2019考研数学冲刺重点之二重积分的计算思路的讲解,希望能够助大家一臂之力:
          计算二重积分的基本思路是将其化作累次积分(也即两次定积分),要把二重积分化为累次积分,有两个主要的方式:一是直接使用直角坐标,二是使用极坐标。这是我们计算二重积分的两个主要的武器。
          首先,对直角坐标来说,主要考点有两个:一是积分次序的选择,基本原则有两个:一是看区域,选择的积分次序一定要便于定限,说得更具体一点,也就是要尽量避免分类讨论;二是看函数,要尽量使第一步的积分简单,选择积分次序的最终目的肯定是希望是积分尽可能地好算一些,实践表明,大多数时候,只要让二重积分第一步的积分尽可能简单,那整个积分过程也会比较简洁,所以我们在拿到一个二重积分之后,可以根据它的被积函数考虑一下第一步把哪个变量看成常数更有利于计算,从而确定积分次序。二是定限,完成定限之后,二重积分就被化为了两次定积分,就可以直接计算了。
       
       

       
          以上是我们计算二重积分的主体思路,在此基础之上,我们还可以利用对称性,它在二重积分的计算中虽然属于辅助性的技能,但如果恰当使用的话,还是可以明显地简化计算。
          二重积分中的对称性分为两种:一是奇偶性,二是轮换对称性。一般来说,对称性应该使用在拿到一个二重积分之后的第一步,只要积分区域关于某坐标轴是对称的,就要先检验被积函数是否具有相应的对称性,尤其要注意有没有奇函数,以尽可能地简化计算。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-24 05:17 , Processed in 0.066336 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表