考研论坛

 找回密码
 立即注册
查看: 110|回复: 0

考研数学复习:微积分教程三

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-6 15:11:47 | 显示全部楼层 |阅读模式
研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
    本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。
    微分学的主要内容包括:极限理论、导数、微分等。
    积分学的主要内容包括:定积分、不定积分等。
     
    微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
一元微分
    定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = Adx。
    通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
几何意义
    设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
多元微分
    多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。
    ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1),A*ΔX+B*ΔY即是Z在点的全微分。
    总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。
    积分有两种:定积分和不定积分。
    定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
    一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
    其中:[F(x) + C]' = f(x)
    一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
    定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。
    对待考研数学,在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完例题之后,切莫忘记要好好选两道习题来巩固一下。不要因一些难题贬低自己的自信心。
mtpdC1ib3JkZXItdmVydGljYWwtc3BhY2luZzogMHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZmZWN0OiBub25lOyAtd2Via2l0LXRleHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1zdHJva2Utd2lkdGg6IDBweA==">
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-2 15:31 , Processed in 0.059539 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表