考研论坛

 找回密码
 立即注册
查看: 126|回复: 0

2018考研数学备考:导数的计算和应用

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2017-8-6 15:05:45 | 显示全部楼层 |阅读模式
与导数相关的知识点可谓是每年考研题中必不可少的一道“菜”,无论是选择题还是填空,或者解答题。所以将导数的相关知识点学习清楚,复习明白是我们要做的首要任务,新东方在线就导数的计算和应用跟大家分享下。
    导数的计算中要先掌握四则运算,反函数和复合函数的求导运算。有了这些就可以将导数的大部分计算题搞定,除此之外,还需要掌握几个特殊函数的导数计算:幂指函数,隐函数,参数方程,抽象函数,我们一一介绍。
    幂指函数:什么是幂指函数?一般的,将形如y=f(x)g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。简单的说就是
    底数和指数都是关于自变量的函数,像这样的就称为幂指函数,例如:y=(sinx)x2,y=xx。对它求导有两种方法,第一:对数恒等变换,y=f(x)g(x)=eg(x)lnf(x),再按照复合函数求导计算就可以了,即。第二:取对数,两边同时取对数,再关于自变量求导,把因变量看成是自变量的函数,即
    隐函数:设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
    参数方程:在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。参数方程求导方法:
    一阶导数:
    二阶导数:
    其中二阶导数不需要记公式,只需要掌握二阶求导过程,做题目时直接计算就可以了。
    抽象函数:把没有给出具体解析式的函数称为抽象函数。抽象函数的求导跟隐函数求导类似,直接求导,把因变量看成自变量的函数,求导即为y' 。
    以上就是导数计算中几种特殊的函数导数计算,在考研中会跟其他知识点和章节结合出题,结合最多的就是导数应用。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-3 12:04 , Processed in 0.066746 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表