考研论坛

 找回密码
 立即注册
查看: 129|回复: 0

2014考研数学线性代数复习思路建议

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-8-5 18:02:02 | 显示全部楼层 |阅读模式
  对于很多准备参加2014考研的同学们也希望多多了解数学线性代数特点,该如何渗透理解,下面小编是整理分享的数学线性代数科学复习要点,供大家参考学习。
          一 内容抽象,向量部分最为典型。
          在现实生活中,我们可以看到一维空间、二维空间甚至是三维空间,但是对于三维空间我们是难以想象的。向量主要研究的就是三维向量,所以这就需要较强的抽象思维和逻辑推理能力,这一点对于侧重于计算能力培养的工科学生来说是一个难点。因此在学习的过程中,对所涉及的基本概念应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系以及它们的作用,一步步达到运用自如的境地。
          二 概念多,性质多,定义多,定理多。
          例如有关矩阵的,就有相似矩阵、合同矩阵、正定矩阵、正交矩阵、伴随矩阵等。在向量这部分,向量组线性相关的性质就10来个。
          三 符号多,运算法则多,有些运算法则与以前的完全不同。
          正如《2012年全国硕士研究生入学统一考试数学考试大纲配套强化指导》第二篇线性代数部分所说的,对于数的运算我们满足交换律、结合律和消去律;但是矩阵的运算与之有相同的也有不同的,矩阵的运算不满足交换律和消去律,但是满足结合律。所以这些在复习的时候一定要注意区分。
          四 内容纵横交错,前后联系紧密,环环相扣,相互渗透。
          线性代数内容之间的联系是比较紧密的。相对高数来说,它们的联系又是非常隐蔽的。以可逆矩阵为例,阶矩阵是可逆的,从行列式的角度有其等价说法,就是阶矩阵的行列式不等于0;从矩阵的角度它的等价说法是矩阵的秩等于阶数,从向量的角度描述,就是矩阵的行向量组是线性无关的,同时列向量组也是线性无关的,并且任何一个三维列(行)向量都可以由该矩阵的列(行)向量组来线性表示;从特征值的角度描述,就是矩阵的特征值都是非零的。
          针对线性代数的这些特点,考研辅导老师们建议2014年的考生们在复习过程中综合掌握一条主线,两种运算,三个工具这条主线就是解线性方程组。线性方程组是线性代数的主线,也是考试的重点。在求解线性方程组时主要涉及两种运算:求行列式、矩阵的初等行(列)变换。要把握行列式与矩阵之间的区别和联系,在进行运算的过程中保证计算的准确和速度。那三个工具就是行列式、矩阵、向量,他们贯穿整个线性代数的始终。
          因此在学习的过程中,对所涉及的概念、性质及定理要理解,同时很多东西还要靠记忆,尤其要注意基本概念、基本方法之间的相互关系,有些问题是相互交错,相互渗透,似螺旋上升,比如矩阵的秩与向量组的秩、线性方程组与向量组的线性组合、线性相关之间的关系。弄清这些关系,一方面可对所涉及的概念通过不断重复而达到加深印象的目的,另一方面也能对问题有进一步的深入理解。
          从以往数学考试情况来看,有很多考生表现出了很高的数学造诣和较强的数学能力,但整体得分较低,说明考生的基础还不够扎实,学习和复习中还存在一些问题。
          首先是推理论证能力没有达到要求,其次是分析问题和解决问题的能力有一定的差距,特别是处理应用题和证明题的能力。考生对常见的试题类型和知识点得分情况较好,对大纲中要求的但在以前考试中出现频率低的试题和内容,特别是一些立意和形式新颖的试题,得分情况就不好,说明考生知识掌握的不够全面,有应试倾向,不利于考生能力的全面发展。提醒同学们还要注意综合题目,因为在教学中,各部分内容是单独讲的,综合训练的时间较少,而研究生考试更多是多个知识点联系在一起,要彻底理清各章的关系和各个知识点的联系,综合应用知识解决问题。另外运算能力不过关,会而不全,算而不对的情况在试卷中很常见,线性方程组解错、特征值和特征向量算错等,这也是考生在学习和复习中应着力解决的问题,计算认真是一项重要的任务。以上分析内容希望对大家有所帮助,小编提前预祝大家明年考研一切顺利,取得自己理想的成绩!
                               
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-15 23:44 , Processed in 0.085929 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表