考研论坛

 找回密码
 立即注册
查看: 487|回复: 1

2015考研联考数学六大基础概念

[复制链接]

33万

主题

33万

帖子

100万

积分

论坛元老

Rank: 8Rank: 8

积分
1007237
发表于 2016-7-27 10:52:00 | 显示全部楼层 |阅读模式
掌握基础知识,包括深刻理解基本概念和定理、熟练运用基本数学方法。联考数学95%以上的题都是考基础知识。不做偏题做难题,不求做多,但求做透。什么是偏题?仅就一个非基本概念一直挖下去特别深就是偏题目。比如某些N阶行列式。什么是好的难题?要用多个基本概念巧妙结合才能解决的问题就是好题。比如概率题中用到了数列和微积分。
  对于数学我还是强调基本功,在复习数学的一步,我选择了看大学时期的课本,尽量的把课本上定理和概念的来龙去脉弄清楚,尽量准确和清楚的理解概念和公式,这样你就会体会到概念的本质,即使是难的、复杂的题也是能够分解成为若干个小概念的;课后的题,我也尽量做了,因为课后题和参考书上的题有点不同的是它是按你的由不知到知、由浅入深的学习进度安排的,所以在深度和难度上的连续性比较好,不象许多的参考书,题目的安排是以读者已有一定的概念基础为思路的,所以跳跃性较大,不利于打好基本功,尤其是对于数学基础较薄弱的同学,从基础开始尤为重要。基础知识这么重要,那么哪些内容属于基础知识呢? 对不起,没有捷径,机工版教材上讲的都是基础知识。我这里只能选几个主题说一下。
  1、集合的概念
  集合是数学中重要的概念,是整个数学的基础。我印象中,集合的定义是:集合是具有相同性质的元素的集体。这个定义属于循环定义,因为集体就是集合。我的理解是:把一些互不相同的东西放在一起,就组成一个集合。唯一的要求是“互不相同”。集合中的元素可以是毫不相干的。元素可以是个体,也可以是一个集合, 比如1,2,{1,2}就构成一个集合,集合中有三个元素,两个是个体,一个是集合。元素可以是数对,(x,y)是一个数对,代表二维坐标系中的一个点。如果集合中的元素没有共同的特征,要完整地描述一个集合,我们被迫列出集合中的每一个元素,如{一阵风,一匹马,一头牛};如果存在相同的特征,描述就简单多了,如{所有正整数}、{所有英国男人}、{所有四川的下过马驹的红色的母马},不用一一列举。区间是特殊的集合,专门用来表示某些连续的实数的集合。集合在逻辑中的应用也十分广泛,学好了集合,数学和逻辑都能提高,起到“两个男人并排坐在石头上”的作用。集合中元素的个数是集合的重要特征。如果两个集合的元素能有一一对应的关系,那么这两个集合元素的个数就是相等的。在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。集合分为有限集合和无限集合,元素的个数一般是针对有限集合说的。对无限集合来说,有很多不同之处。比如{所有的正整数}与{所有的正偶数},后者只是前者的一个子集,但两者存在一一对应的关系,因此元素个数“相等”。而{所有整数}与{所有实数}则不可能建立一一对应的关系,因为它们的无限的级别是不同的。对两个无限集合,我们只强调是否能一一对应,不说元素个数是否相等。两个集合有交集和并集的关系。交集是同时在两个集合中的所有元素的集合,例如{中国人}交{男人}={中国男人},{韩国俊男}交{韩国美女}={河利秀}。并集是在其中任一个集合中的所有元素的集合。因为集合中的元素不能重复,所以取并集时要去掉重复了的元素,A并B的元素个数=A的元素个数+B的元素个数-A交B的元素个数。
  2、函数的概念
  如果集合A中的每一个元素,按照某种对应关系,在集合B中都有唯一的对应元素,那么这种对应关系被称为A到B的函数。例如Y=2X,Y=X^2都建立了{全体实数}到{全体实数}的函数关系,如果用f代表对应关系,则函数表述为:f(x)=2x, f(x)=x^2。 如果A中的某些元素,不能对应B中唯一的元素,则不存在函数关系。比如{所有小偷}与{所有失主},因为某些小偷偷过很多不同失主的东西。函数的定义域和值域。MBA数学只考虑实数。所有能使函数有意义的实数的集合,构成函数的定义域,即上面的集合A。F(X)=X^(1/2)定义域为{X/ X=0},F(X)=1/X定义域为{X/ X=0},F(X)=LN(X)定义域为{X/ X0}。如果函数中同时包括几类简单函数,则定义域是各类函数定义域的交集。定义域按照对应关系,能对应的所有实数的集合,构成函数的值域。定义域、对应关系、值域,三者构成一个函数。定义域中的每一个元素,与其在值域中对应的元素,组成一个数对,由二维坐标系中的一个点来表示。所有这样的点形成了函数的图象。图象能直观地表现函数的对应关系,大家应该熟悉幂函数、指数函数、对数函数的基本图象。要求高的同学可以进一步掌握图象的平移、反射、旋转。奇函数和偶函数的定义不说了,要注意的是奇函数和偶函数的定义域必须关于原点对称。F(X)=X,X为任意实数 是奇函数,如果限定X属于[-3,5],那函数就不是奇函数了。  反函数。如果集合A中的每一个元素,按照某种对应关系,在集合B中都有唯一的对应元素;而B中的每一个元素,在A中都有唯一的元素与之对应。则A到B的对应关系是可逆的,A到B的对应关系是原函数,B到A的对应关系是反函数。对于连续的函数来说,只有绝对增函数或绝对减函数,才存在反函数,否则A中必有两个元素,在B中对应同一元素。对于不连续的函数则没有上述限制。复合函数。集合A中的元素,按一种函数对应到集合B,B中的相应元素,再按另一种函数对应到集合C,后形成集合A到集合C的对应关系,称为复合函数。
  3、数列的概念
  数列是一种特殊的函数,其定义域为全体或部分自然数。数列的通项公式A(N)就是一个函数,求出通项公式,等于求出了数列的任一项。数列的前N项和S(N)(N=1,2,。。。)构成了一个新的数列,知道S(N)的公式,通过A(1)=S(1),A(N)=S(N)-S(N-1)就能求出原数列的通项公式。   MBA数学主要考察等差数列和等比数列。有些数列不是等差数列或等比数列,但经过改造后可构造出等差数列或等比数列,如A(1)=1,A(N+1)=2A(N)+1。这个数列的每一项都加上1,就成为等比数列了,通项公式为2^N,因此原数列通项公式为:A(N)=2^N-1其他常见的数列包括A(N)=N^3, A(N)=N!/(N-K)!,A(N)=1/[N(N-1)]等,都有相应的办法能处理。
回复

使用道具 举报

0

主题

7619

帖子

1万

积分

论坛元老

Rank: 8Rank: 8

积分
15996
发表于 2016-7-27 11:23:30 | 显示全部楼层

  4、极限、连续、导数、积分的概念
  极限的概念是整个微积分的基础,需要深刻地理解,由极限的概念才能引出连续、导数、积分等概念。极限的概念首先是从数列的极限引出的。对于任意小的正数E,如果存在自然数M,使所有N》M时,A(N)-A都小于E,则数列的极限为A。极限不是相等,而是无限接近。而函数的极限是指在X0的一个临域内(不包含X0这一点),如果对于任意小的正数E,都存在正数Q,使所有(X0-Q,X0+Q)内的点,都满足F(X)-A《E,则F(X)在X0点的极限为A。很多求极限的题目都可以用极限的定义直接求出。
  例如F(X)=(X^2-3X+2)/(X-2), X=2不在函数定义域内,但对于任何X不等于2,F(X)=X-1,因此在X无限接近2,但不等于2时,F(X)无 限接近1,因此F(X)在2处的极限为1。
  连续的概念。如果函数在X0的极限存在,函数在X0有定义,而且极限值等于函数值,则称F(X)在X0点连续。以上的三个条件缺一不可。
  在上例中,F(X)在X=2时极限存在,但在X=2这一点没有定义,所以函数在X=2不连续;
  如果我们定义F(2)=1,补上“缺口”,则函数在X=2变成连续的;
  如果我们定义F(2)=3,虽然函数在X=2时,极限值和函数值都存在,但不相等,那么函数在X=2还是不连续。  由连续又引出了左极限、右极限和左连续、右连续的概念。函数值等于左极限为左连续,函数值等于右极限为右连续。如果函数在X0点左右极限都存在,且都等于函数值,则函数在X=X0时连续。这个定义是解决分段函数连续问题的重要的、几乎是唯一的方法。  如果函数在某个区间内每一点都连续,在区间的左右端点分别左右连续(对闭区间而言),则称函数在这个区间上连续。
  导数的概念。导数是函数的变化率,直观地看是指切线的斜率。略有不同的是,切线可以平行于Y轴,此时斜率为无穷大,因此导数不存在,但切线存在。
  导数的求法也是一个极限的求法。对于X=X0,在X0附近另找一点X1,求X0与X1连线的斜率。当X1无限靠近X0,但不与X0重合时,这两点连线的斜率,就是F(X)在X=X0处的导数。关于导数的题目多数可用导数的定义直接解决。教科书中给出了所有基本函数的导数公式,如果自己能用导数的定义都推导一遍,理解和记忆会更深刻。其中对数的导数公式推导中用到了重要极限:limx0 (1+x)^(1/x)=e。
  导数同样分为左导数和右导数。导数存在的条件是:F(X)在X=X0连续,左右导数存在且相等。这个定义是解决分段函数可导问题的重要的、几乎是唯一的方法。
  如果函数在某个区间内每一点都可导,在区间的左右端点分别左右导数存在(对闭区间而言),则称函数在这个区间上可导。
  复合函数的导数,例如f[u(x)],是集合A中的自变量x,产生微小变化dx,引起集合B中对应数u的微小变化du,u的变化又引起集合C中的对应数f(u)的变化,则复合函数的导函数f’[u(x)]=df(u)/dx=df(u)/du * du/dx=f’(u)*u‘(x)
  导数在生活中的例子常见的是距离与时间的关系。物体在极其微小的时间内,移动了极其微小的距离,二者的比值就是物体在这一刻的速度。对于自由落体运动,下落距离S=1/2gt^2,则物体在时间t0的速度为V(t0)=[S(t0+a)-S(t0)]/a, 当a趋近于0时的值,等于gt0; 而速度随时间的增加而增加,变化的比率g称为加速度。加速度是距离对时间的二阶导数。
  从直观上看,可导意味着光滑的、没有尖角,因为在尖角处左右导数不相等。有笑话说一位教授对学生抱怨道:“这饭馆让人怎么吃饭?你看这碗口,处处不可导!”  积分的概念。从面积上理解,积分就是积少成多,把无限个面积趋近于0的线条,累积在一起,就成为大于0的面积。我们可以把一块图形分割为狭长的长方形(长方形的高度都取函数在左端或右端的函数值),分别计算各个长方形的面积再加总,可近似地得出图形的面积。当我们把长方形的宽度设定得越来越窄,计算结果就越来越精确,与图形实际面积的差距越来越小。如果函数的积分存在,则长方形宽度趋近于0时,求出的长方形面积总和的极限存在,且等于图形的实际面积。这里又是一个极限的概念。
  如果函数存在不连续的点,但在该点左右极限都存在,函数仍是可积的。只要间断点的个数是有限的,则它们代表的线条面积总和为0,不影响计算结果。
  在广义积分中,允许函数在无限区间内积分,或某些点的函数值趋向无穷大,只要积分的极限存在,函数都是可积的。
  严格地说,我们只会计算长方形的面积。从我们介绍的积分的求法看,我们实际上是把求面积化为了数列求和的问题,即求数列的前N项和S(N),在N趋近于无穷大时的极限。很多时候,求积分和求无限数列的和是可以相互转换的。当我们深刻地理解了积分的定义和熟练地掌握了积分公式之后,我们同样可用它来解决相当棘手的数列求和问题。
  例如:求LIM Nà正无穷大时,1/N*[1+1/(1+1/N)+1/(1+2/N)+。。。+1/(1+(N-1)/N)+1/2]的值。
  看似无从下手,可当我们把它转化为一连串的小长方形的面积之后,不禁会恍然大悟:这不是F(X)=1/X在[1,2]上的积分吗?从而轻松得出结果为ln2。
  除了基本的积分公式外,换元法和分步法是常用的积分方法。换元积分法的实质是把原函数化为形式简单的复合函数;分步积分法的要领是:在∫udv=uv-∫vdu中,函数u微分后应该变简单(比如次数降低),而函数v积分后不会变得更复杂。
  5、排列、组合、概率的概念
  排列、组合、概率都与集合密切相关。排列和组合都是求集合元素的个数,概率是求子集元素个数与全集元素个数的比值。
  以常见的全排列为例,用S(A)表示集合A的元素个数。用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素,即S(A)=9!   如果集合A可以分为若干个不相交的子集,则A的元素等于各子集元素之和。把A分成各子集,可以把复杂的问题化为若干简单的问题分别解决,但我们要详细分析各子集之间是否确无公共元素,否则会重复计算。  集合的对应关系
  两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。如果集合A与集合B存在一一对应的关系,则S(A)=S(B)。如果集合B中每个元素对应集合A中N个元素,则集合A的元素个数是B的N倍(严格的定义是把集合A分为若干个子集,各子集没有共同元素,且每个子集元素个数为N,这时子集成为集合A的元素,而B的元素与A的子集有一一对应的关系,则S(A)=S(B)*N
  例如:从1、2、3、4、5、6、7、8、9中任取六个数,问能组成多少个数字不重复的六位数。
  集合A为数字不重复的九位数的集合,S(A)=9!
  集合B为数字不重复的六位数的集合。
  把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!
  这时集合B的元素与A的子集存在一一对应关系,则
  S(A)=S(B)*3!
  S(B)=9!/3!  组合与排列的区别在于,每一个组合中的各元素是没有顺序的。无论这些元素怎样排列,都只当作一种组合方式。所以在计算组合数的时候,只要分步,就意味有次序。取N次,N件物品的N!种排列方式都会被当作不同选法,该选法就重复计了N!次。比如10个球中任取三个球,取法应该是C(10,3),但如果先从10个中取一个,得C(10,1),再从9个中取一个得C(9,1),再从8个中取一个得C(8,1),再相乘结果成了P(10,3),结果增大了3!倍。  概率的概念。在有限集合的情况下,概率是子集元素个数与全集元素个数的比值。在无限集合的情况下,概率是代表子集的点的面积与代表全集的点的面积的比值。
  概率分布函数可以描述概率分布的全貌。离散型的概率分布是一组数列,计算事件发生的概率、数学期望和方差都使用数列的计算方法。连续型的概率分布是一个函数, 它等于概率密度函数的积分,计算事件发生的概率、数学期望和方差都使用积分的计算方法。
  概率的概念不难理解,解题能力决定于对数列和积分中的方法掌握的熟练程度。
  6、线性代数的相关概念
  向量是一组数,代表从原点向一个点引出的有方向的线段。在平面上容易理解,(X,Y)代表从原点从点(X,Y)引出的线段;三维空间中的向量也好理解,伸出胳膊随便指向一个方向,就是一个向量。超过三维的向量就只能靠想象了。
  向量之间线性相关的定义是这样的,对于向量B和一组向量A1,A2,。。。,AN,如果存在一组不全为0的数L1,L2,。。。,LN,使B=L1A1+L2A2+。。。+LNAN,则称向量B与向量组A线性相关,否则称向量B与向量组A线性无关。B与A线性相关,即B是A的一个线性组合。如三维空间中的任一向量K(X,Y,Z),都是向量组A1(1,0,0)、A2(0,1,0)、A3(0,0,1)的一个线性组合,因为K=XA1+YA2+ZA3。上述定义对解决线性相关的问题非常重要,必须深刻理解。
  极大无关组的概念。极大无关组是一组向量A1,A2,。。。,AN中选出的部分向量,组成新的向量组,假定叫向量组S。S满足:A中的任一向量都与S线性相关(保证S的极大性),S中的任一向量与S中其余的向量线性无关(保证S的无关性)。则S为A的一个极大无关组。
  向量组中可能存在多个极大无关组。假设三维空间中的所有向量组成一个向量组,
  则向量组A1(1,0,0)、A2(0,1,0)、A3(0,0,1)是其中的一个极大无关组。向量组B1(1,0,0)、B2(0,2,0)、B3(0,0,3)同样是极大无关组。只要选出的三个向量组成的行列式值不为0,就都是一个极大无关组。对于任意维空间,极大无关组可看作一组向量中选出的一组坐标系,每个向量都是这组坐标系中的一个点。
  矩阵是一组向量排成的长方形。这组向量中,极大无关组中含有的向量的个数称为矩阵的秩。如果每个向量都视为一条信息,矩阵的秩就是矩阵包含的信息量的条数。极大无关组之外的向量,代表无效信息,因为它们可以由极大无关组中的信息表示出来。
  理解了基本概念,对基本数学方法就更容易掌握。初等数学是高等数学的基础,高等数学除了多出新的概念之外,运用的都是初等数学的方法。数列和微积分又是概率论的基础。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-16 19:05 , Processed in 0.080446 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表