考研高数:不定积分与定积分定理定义汇总
考研高数一直是考生们的一个大难题。下面是中公考研对高等数学中不定积分与定积分这一部分定理定义进行的整理总结,分享给各位考生,希望对考生们的复习有所帮助。第四章 不定积分
1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.
2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。
第五章 定积分
1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程
2、函数可积的充分条件定理设f(x)在区间上连续,则f(x)在区间上可积,即连续=>可积。
定理设f(x)在区间上有界,且只有有限个间断点,则f(x)在区间上可积。
3、定积分的若干重要性质性质如果在区间上f(x)≥0则∫abf(x)dx≥0.推论如果在区间上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
性质(定积分中值定理)如果函数f(x)在区间上连续,则在积分区间上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。
页:
[1]