2015考研高等数学之重难点解析
通过2015年的考试大纲我们发现不管是在数一、数二还是数三中高等数学所占的比例都是最大的,下面我们就高等数学中的重难点给大家分析一下。高等数学从整体上可以分为三大类:极限、导数和积分,而对于每一类而言又可以分为三个部分:概念、计算和应用,每一类在这三部分上的要求是不尽相同的,下面我们就来一个一个的分析。
极限:对于极限而言,极限的概念不是重点,重点是极限的计算和应用。对于计算,我们知道求极限的方法是很多的,那么给出一道求极限的题目,对大家的要求就是需要能够找到合适的求极限的方法算出最终的极限;对于应用,它主要是定义连续、导数的概念等。极限可以说是整个高等数学的基石,所以大家在复习极限的时候一定要把这块内容吃透。
导数:对于导数而言,概念、计算和应用都是考试的重点。对于概念,大家要理解导数的几何意义,会通过左右导数判断函数在一点处是否可导;导数的计算可以说是在整个考研数学的试卷中都会有体现的,对于这部分内容大家一定要掌握常见函数类型导数的求法、复合函数求导、积分上限函数求导以及多元函数求偏导;导数的应用这一块的考点很多,大家需要特别注意的是函数的极值、最值、拐点,函数单调性、凹凸性的判断,会利用导数的几何意义求切线和法线。
积分:对于积分而言,概念、计算和应用也是考试的重点。对于概念,大家要掌握的是定积分的思想:分割、近似、求和、取极限,这对于大家在定积分应用上会很有帮助。对于计算,我们知道积分包括不定积分、定积分、二重积分和三重积分,实际上不定积分和定积分计算方法是一样的,它们也是计算多重积分的一个前提,所以关于不定积分和定积分的计算方法大家一定要掌握。数二、数三的同学是不考三重积分的,所以二重积分对于数二和数三的同学而言是很重要的考点,其实对于二重积分的计算大家记住一个原则:化为累次积分进行计算。数一的同学还需要掌握三重积分、曲线积分、曲面积分的计算,这部分也是历年的常考点。积分的应用主要是定积分的应用,大家需要掌握利用定积分计算平面图形的面积、旋转体的体积及侧面积、曲线弧长、功、质心、形心等,这部分数三的同学只需要掌握平面图形的面积、旋转体体积的计算就可以了。
当然了,高等数学中还有级数(数一、数三)和微分方程是需要大家掌握的。对于级数,大家只需要掌握级数敛散性的判断、收敛半径、收敛区间、收敛域、幂级数展开和求和就可以了,数一的同学还需要会求函数的傅里叶展开;微分方程中大家要会求常见微分方程的解。
以上就是对高等数学重难点的简单分析,希望能给大家的复习带来帮助。
(本文作者为中公考研数学名师——王玉娇)
更多考研第一手信息请点击:
2015考研大纲及时解析
2015历年考研真题逐题精讲
页:
[1]