考研网 发表于 2018-11-3 14:22:56

2019考研高等数学:证明题出题点及解题技巧分析

证明题是令很多需要考数学的考研学生头疼的题型之一,考研数学复习进入冲刺阶段,如果还是对证明题不够擅长,就需要对一些常考的考点进行重点突击。下面是历年证明题的难点及解题技巧,以供大家参考。
  ►题目篇
  考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:
  1、数列极限的证明
  数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。
  2、微分中值定理的相关证明
  3、方程根的问题
  包括方程根唯一和方程根的个数的讨论。
  4、不等式的证明
  5、定积分等式和不等式的证明
  主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。
  6、积分与路径无关的五个等价条件
  这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。
  ►方法篇
  以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢?
  1、结合几何意义记住基本原理
  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。
  只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。
  这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
  2、借助几何意义寻求证明思路
  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。
  如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。
  3、逆推法
  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
                        
                   躲过了夏日骄阳似火的炙热,9月一来,帝都的温度已经感觉到了明显的下降,凉爽的秋季将每天往返自习室学习变得不再痛苦,又适逢考研大纲的发布,小伙伴们要及时针对2019考研大纲的变化对复习进行调整,然后赶快为知识的整合提升做好准备吧!跨考教育一线名师倾力开课,秋季集训营专注知识点的整合,全力燃爆,加速提升,对得起自己近一年的辛苦付出!
      
       小编整理了历年考研真题及答案解析,关注微信公众号:跨考考研,回复“真题”即可获得,说不定还能找到一起上自习的研友哦!

       
        2019秋季整合提升方案
       
       
        2019考研公共课秋季整合
        2019最新考研政治大纲
        公共课考研大纲变动汇总
       
       
        2019年考研政治《思修法基》练习试题及答案汇总
        【跨考名师精品】2019考研必读:复习方法及真题热点解读
       
       
        抓住最后选择院校专业的机会
        2019考研:就业率高的十大考研专业推荐
        34所自主划线高校历年复试分数线(2012-2018)
       
       
        2019考研:这些相似的考研专业都有什么区别?
        跨专业考研难度较大的六大专业
       
页: [1]
查看完整版本: 2019考研高等数学:证明题出题点及解题技巧分析