考研族 发表于 2018-9-28 20:58:15

浅谈2018考研数学曲面积分及其解决方法(三)

  在系列文章的前两部分,我们介绍了考研数学中曲面积分部分的考试地位,重点和难点,还总结了一般情况下的解决方法。我们本节来继续讨论曲面积分的解决方法。
  (1)对称型曲面积分的特别处理方法
  较为复杂的曲面积分计算非常令人头疼,但是如果恰好给出的曲面积分具有某种意义下的对称性,那么问题就会变得相对容易。比如,给出的被积函数关于

  (1)被积函数为1的曲面积分的几何意义
  有些时候,给定的曲面积分中被积函数恰好为1,那么此时曲面积分的几何意义就是,给定曲面的面积。这种曲面积分在进行处理和计算的时候,与我在前面提到的几种经典方法并没有本质曲面,主要思想依旧是依赖适当的坐标和参数选择化曲为直,再按照一般积分的方法去处理。
  特别值得一提的是,有些时候题目要求大家求一些曲面的面积,除了考虑用旋转体面积公式之外,曲面积分的方法也是值得考虑的,因为这样会显得更为自然和直观,而且不用刻意去记忆稍显复杂的旋转体面积公式。
  (2)高斯公式
  高斯公式是解决曲面积分问题的有力工具之一,它按照封闭曲面曲面直接过渡为三重积分的方式处理曲面积分,但是需要大家注意的是,如果给定的曲面不封闭,则需要添加一些部分使它封闭,再将得到的减去给出部分带来的影响。第二点就是需要考虑定向,这些都写在教科书和一般复习材料里,我在这里不再赘述。需要问的一个问题是,这样做的本质原因是什么?为什么可以将封闭的曲面积分直接转化为三重积分?而根据斯托克斯公式,封闭曲线的积分也可以看成是曲面积分,这样做的合理性是如何保证的?
  想回答这些问题,需要更为抽象和高深的数学知识。
  【温馨推荐】文都教育2018考研大纲专题已上线——点击进入,文都各位名师届时将为考生们做出全面详细的解析。
  
页: [1]
查看完整版本: 浅谈2018考研数学曲面积分及其解决方法(三)