2018考研数学必看重点:定积分证明三大解题方法
2018考研学习交流3群 438424323
2018考研数学冲刺复习进行中,下面整理分享2018考研数学必看重点:定积分证明三大解题方法,帮助大家更好的复习!
在考研数学中,定积分及其应用这部分知识点考察形式多样,是每年考察的重点,而定积分证明就是常见形式之一,大家需要加以重视,下面一起来看看这类题目的解题思路吧。
2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。
3、定积分不等式的证明。一般有三种方法。
①利用被积函数的单调性、定积分的保序性和估值定理证明。
②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。
③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。
3、实对称矩阵的特殊考点:
实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:
(1)实对称矩阵的秩等于非零特征值的个数
这个结论只对实对称矩阵成立,不要错误地使用。
(2)两个实对称矩阵,如果特征值相同,一定相似
同样地,对于一般矩阵,这个结论也是不成立的。
4、实对称矩阵在二次型中的应用
使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。
以上是中公考研为大家准备整理的“2018考研数学必看重点:定积分证明三大解题方法”的相关内容。另外中公考研提醒大家2018考研考场查询入口|2018考研考场安排、2018年各省市研究生招生考试报名人数汇总已经出来。同时,为了帮助考生更好地复习,中公考研为广大学子推出2018考研考前冲分营、VIP1对1、保研课程系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
页:
[1]