2013考研数学线性代数解析:大题延续以往思路
跨考教育考后首发2013考研答案,名师权威点评2013年研究生入学考试真题解析 点击进入>>2013考研数学线性代数解析:大题延续以往思路
2013年考研数学线性代数部分的题目还是延续了以往的思路,两道大题的考点基本上与跨考教育数学教研室的老师们预期的是一致的,主要集中在线性代数核心的两个考点上:线性方程组与二次型。
其中线性方程组部分的考题,需要考生自己转化,体现了知识的综合性与线性代数各章节之间的联系性。首先将矩阵中的元素用未知数表示,然后通过矩阵的乘法与线性方程组之间的相互转化将问题转化为常规题目:含参方程组解的判定及求解。此类题目比较基础,计算量也不是很大大,按照跨考教育的全年复习规划扎扎实实打好了基本功的考生是可以比较轻松的拿到这道题的分数的。
考查二次型的题目,思路也比较简单,第一问属于求二次型的矩阵,属于基础题目,只要将题中所给的式子按照完全平方公式展开成二次型的形式,然后很轻松的就会将二次型的矩阵写出,写出矩阵也就完成了第一问的证明。第二问实质上考查的是抽象矩阵的特征值的求法,此类问题的解决要靠考生深刻理解矩阵特征值与特征向量的定义,另外还要仔细观察题目中所给的已知条件,充分利用起来。除此之外本题还考到了二次型的标准形,这里考生只需知道标准形中的系数实质上是二次型矩阵的特征值,故特征值的问题解决了二次型标准形的证明就不在话下了。事实上这些内容也是考生在复习线性代数时所必须具备的基本功。与前一题目相比,本题的问题相对比较直接,对抽象矩阵求特征值不太熟练的考生可能会在第二问上浪费一定的时间。
但是总体来说,2013年考研数学线性代数部分的命题思路是比较基础的,能踏踏实实打好基础的考生定可取得理想的成绩!
页:
[1]