考研网 发表于 2017-8-6 14:55:14

2015考研数学初期复习:概率论与数理统计初步

随机事件和概率考查的主要内容有:
    (1)事件之间的关系与运算,以及利用它们进行概率计算;
    (2)概率的定义及性质,利用概率的性质计算一些事件的概率;
    (3)古典概型与几何概型;
    (4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
    (5)事件独立性的概念,利用独立性计算事件的概率;
    (6)独立重复试验,伯努利概型及有关事件概率的计算。
    要求考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。
    随机变量及概率分布考查的主要内容有:
    (1)利用分布函数、概率分布或概率密度的定义和性质进行计算;
    (2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;
    (3)会求随机变量的函数的分布。
    (4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。
    要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。
    随机变量的数字特征考查的主要内容有:
    (1)数学期望、方差的定义、性质和计算;
    (2)常用随机变量的数学期望和方差;
    (3)计算一些随机变量函数的数学期望和方差;
    (4)协方差、相关系数和矩的定义、性质和计算;
    要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。
    大数定律和中心限定理考查的主要内容有:
    (1)切比雪夫不等式;
    (2)大数定律;
    (3)中心极限定理。
    要求考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。
    数理统计的基本概念考查的主要内容有:
    (1)样本均值、样本方差和样本矩的概念、性质及计算;
    (2)χ2分布、t分布和F分布的定义、性质及分位数;
    (3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。
    要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。
    参数估计考查的主要内容有:
    (1)求参数的矩估计、极大似然估计;
    (2)判断估计量的无偏性、有效性、一致性;
    (3)求正态总体参数的置信区间。
    要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。
    假设检验考查的显著的主要内容有:
    (1)正态总体参数的显著性检验;
    (2)总体分布假设的χ2检验。
    要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。
页: [1]
查看完整版本: 2015考研数学初期复习:概率论与数理统计初步