考研网 发表于 2016-7-14 08:36:42

2016考研数学微分方程考点分析

  高等数学包含函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷级数等七个模块,每一模块都有不可忽略的重要地位。针对微分方程这一模块,我们为大家带来了2016考研数学微分方程考点分析。
  1、考试内容
  (1)常微分方程的基本概念;(2)变量可分离的微分方程;(3)齐次微分方程;(4)一阶线性微分方程;(5)伯努利(Bernoulli)方程和全微分方程;(6)可用简单的变量代换求解的某些微分方程;(7)可降阶的高阶微分方程;(8)线性微分方程解的性质及解的结构定理;(9)二阶常系数齐次线性微分方程;(10)高于二阶的某些常系数齐次线性微分方程;(11)简单的二阶常系数非齐次线性微分方程;(12)欧拉(Euler)方程;(13)微分方程的简单应用(其中5、7、12只要求数一考生掌握,数二、数三考生不要求掌握)。
  2、考试要求
  (1)了解微分方程及其阶、解、通解、初始条件和特解等概念;(2)掌握变量可分离的微分方程及一阶线性微分方程的解法;(3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;(4)会用降阶法解下列形式的微分方程;(5)理解线性微分方程解的性质及解的结构;(6)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;(7)会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;(8)会解欧拉方程;(9)会用微分方程解决一些简单的应用问题。
  3、常考题型
  (1)变量可分离、齐次微分方程、一阶线性齐次与非齐次微分方程的求解;(2)可降阶的高阶微分方程的求解(数一、数二要求掌握,数三不要求掌握);(3)全微分方程和欧拉方程的求解(数一要求掌握,数二、数三不要求掌握);(4)线性微分方程解得结构;(5)微分方程相关的综合问题。
  2016考研数学微分方程考点分析,在上面文章中我已经进行了详细地分析整理,希望同学们认真阅读,更好地复习微分方程。
页: [1]
查看完整版本: 2016考研数学微分方程考点分析