考研网 发表于 2016-7-14 08:35:55

2015年考研数学高数复习极限篇

  之前,我们已经在“2015年考研数学高数复习极限篇之极限概述”中详细说明了考研数学中极限这部分内容的考试要求、在考研中的地位以及常见题型,但是大多同学最关心的还是极限的计算到底有哪些常用的方法。跨考教育数学教研室田晓辉老师,就这个问题,将极限的常用计算方法总结归纳如下。
      计算极限的常用方法
      (一) 四则运算法则
      四则运算法则在极限中最直接的应用就是分解,即将复杂的函数分解为若干个相对简单的函数和、积和商,各自求出极限即可得到要求的极限。但是在分解的时候要注意:(1)分解的各部分各自的极限都要存在;(2)满足相应四则运算法则,(分母不能为0)。四则运算的另外一个应用就是“抓大头”。如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。
      (二) 洛必达法则(结合等价无穷小替换、变限积分求导)
      洛必达法则解决的是“零比零“或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。当然,在用洛必达的时候需要注意(1)它的三个条件都要满足,尤其要注意第二三个条件,当三个条件都满足的时候才能用洛必达法则;(2)用洛必达法则之前一定要先化简,把要求极限的式子化成“干净”的式子,否则会遇到越求导越麻烦的情况,有的甚至求不出来,所以一定要先化简。化简常用的方法就是等价无穷小替换,有时也会用到四则运算。考生一定要熟记常用的等价无穷小,以及替换原则(乘除因子可以替换,加减不要替换)。考研中,除了也常常会把变限积分和洛必达相结合进行考查,这种类型的题目,首先要考虑洛必达,但是我们也要掌握变限积分求导。
      另外,考试中有时候不直接考查“零比零“或“无穷比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零“或“无穷比无穷”型。
      (三) 利用泰勒公式求极限
      利用泰勒公式求极限,也是考研中常见的方法。泰勒公式可以将常用的等价无穷小进行推广,如

,等。也可以用来求解未知极限式中的未知参数,和解决抽象函数的极限。尤其是未知极限式中的未知参数,比起洛必达更适合用泰勒公式去做。
   

   
页: [1]
查看完整版本: 2015年考研数学高数复习极限篇