考研数学矩阵方程的简化求解方法
与通常意义上的方程类似,矩阵方程是指以矩阵为未知量的矩阵等式. 求解矩阵方程本质上就是矩阵的运算特别是矩阵乘法和求逆矩阵的运算,因此求解矩阵方程,求出未知矩阵的表达式应充分地利用矩阵的运算及其性质先化简,将其化为矩阵方程的以下几种基本形式:http://www.wendu.com/uploadfile/2016/0513/20160513074736739.png
常用解方程组的方法来求解这类问题,通常设出所求矩阵的行数、列数及其待定元素,将矩阵方程转化为待定元素的线性方程组,解此方程组即可求出待求元素,从而求出未知矩阵. 这类问题在历年考研试题中还未涉及,因此需要引起注意.
http://www.wendu.com/uploadfile/2016/0513/20160513074736913.png
以上分两种情况讨论了矩阵方程的求解方法,在复习过程中考生可能还会遇到其他形式的矩阵方程,在毛纲源教授编著的《2016考研数学客观题简化求解》一书中,有更为全面的解读,相应深入浅出的方法技巧一定会使读者看完后有所收获,考研数学的解题更上一个新台阶。
页:
[1]