2018考研数学概率参数估计分析
2018考研数学概率参数估计分析,希望对大家有帮助,快总结起来吧。参数估计是考研概率的最后一个考点,近几年参数估计一直是数一和数三的必考题目,必出现在整张试卷的最后一道大题,分值11分。虽然16年考研数学一和数学三最后一道题均未考查,但16年数学一填空题考查了区间估计,分值4分,迄今参数估计这个考点的重要地位仍不可撼动。
参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。
本章考研主要题型为1)参数的点估计:矩估计‚极大似然估计ƒ估计量的评选标准(数一考查)2)参数的区间估计:正态总体的区间估计(数一考查)。
矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)。其方法步骤如下:构建未知参数的方程,通过总体的原点矩来构造‚解方程,解出未知参数ƒ用样本矩代替总体矩,得未知参数的矩估计量(值)。
极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。构造似然函数,注意,离散总体和连续总体的似然函数不同‚取对数ƒ求导数找驻点得估计。注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。
估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。
参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:第一步,选枢轴量定分布;第二步,造大概率事件得不等式;第三步,解不等式得置信区间。
以上是数一和数三对参数估计部分的全部考点,期望大家能熟练理解其思想和熟练掌握方法步骤,多练习,已达到熟练解题的要求。
以上是中公考研为大家准备整理的2018考研数学概率参数估计分析的内容。中公考研提醒大家2018考研招生简章、2018考研招生目录、2018考研大纲已陆续公布,中公考研将为大家及时提供相关资讯。另外,为了帮助考生更好地复习,中公考研为广大学子推出2018考研暑期集训营、半年集训营、保研课程系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
页:
[1]