考研网 发表于 2016-11-8 18:49:54

2017线性代数核心考点之行列式的计算方法(1)

  下面是中公考研为同学整理的2017线性代数核心考点之行列式的计算方法——化三角形法,希望可以对同学们有所帮助。
  化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
  原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
  

  解:首先把第1行分别乘-7、-5、-3,分别加到第2、3、4行上,再交换第2、3行的位置;把第2行分别乘2、-3后,分别加到第3、4行上;最后给第行乘1加到第4行。

  考研是自己选择的希望去走的道路,因此不管前面会遇到什么,考研的决心一旦作出就要义无反顾、勇往直前。为了帮助考生更好地复习,中公考研为广大学子推出2017考研冲刺集训营、VIP一对一辅导等系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
  选择考研辅导班,就选中公考研!
  
页: [1]
查看完整版本: 2017线性代数核心考点之行列式的计算方法(1)