2016考研数学高数精华考点:函数微分学
第一部分是导数与微分,主要涉及微分学的基本概念、可导性与可微性的讨论,以及导数和微分的计算。此部分一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚;同时要能熟练求一元复合函数、反函数、隐函数、由参数方程所确定函数的二阶导数。第二部分是微分中值定理及导数的应用,主要是利用导数研究函数的性态,以及利用中值定理证明或解决一些问题。这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点,还有一个难点,就是关于微分中值定理,关于这一部分的证明题,需要大家掌握常见的解题思路。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
有关可导性、可微性、导数和微分的计算以及导数的应用,可以结合其他知识点以任何形式出题。而微分中值定理常用在解答题中,特别是用于证明有关中值的等式或不等式。平均来看,本章内容在历年考研试卷中数学一大约占12分,数学二大约占36分,数学三大约占10分。
本章重要题型有:1、导数定义和几何意义;2、复合函数、反函数、隐函数和参数方程所确定的函数的求导;3、含中值等式或不等式的证明;4、利用导数研究函数的形态(判断单调、求极值与最值、求凹凸区间与拐点);5、方程的根的个数的讨论;6、渐近线;7、求边际和弹性(数三)。
页:
[1]